Remainder & Factor Theorems Guided Notes

Name: ____________

Remainder Theorem: for a polynomial \(p(x) \) and a number \(a \), the remainder on division by \((x-a) \) is \(p(a) \); so \(p(a) = 0 \) if and only if \((x-a) \) is a factor of \(p(x) \). In essence, if the remainder is 0, then \((x-a) \) is a factor of \(f(x) \).

Factor Theorem: the binomial \((x-a) \) is a factor of the polynomial \(f(x) \) if and only if \(f(a) = 0 \).

Write a true statement using the given and the provided vocabulary term:

| Given \((x-2)\) is a factor of \(f(x) \) |
|-----------------|-----------------|
| \(f(2) \) | Remainder |
| Quotient | Depressed polynomial |

1. Use \(f(x) = x^3 - 6x^2 + 5x + 12 \) to demonstrate the remainder and factor theorems.

2. Given \(f(x) = 3x^4 + 2x^3 - 5x^2 + x - 2 \) find \(f(-2) \) using synthetic substitution.

3. Given \(f(x) = 5x^2 + 2x - 1 \) find \(f(3) \) using synthetic substitution.

4. Show that \((x+5)\) is a factor of \(f(x) = x^3 + 2x^2 - 13x + 10 \) then find the remaining factors of the polynomial.

5. Show that \((x-6)\) is a factor of \(f(x) = 3x^3 - 13x^2 - 34x + 24 \) then find the remaining factors of the polynomial.
Try it on your own!

Use synthetic substitution to find \(f(4) \) and \(f(-3) \) for following functions

1. \(f(x) = 2x^3 + x^2 - 5x + 3 \)
2. \(f(x) = 5x^3 - 4x^2 + 2 \)

Given a polynomial and one of its factors, find the remaining factors of the polynomial:

3. \(x^3 + x^2 - 10x + 8 \) with factor \((x-2)\)

4. \(x^3 + 15x^2 + 71x + 105 \) with factor \((x+7)\)

5. \(2x^3 - x^2 - 7x + 6 \) with factor \((x-1)\)